parameter \mathring{a} , and an arbitrary but reasonable value (5 Å)¹² was assumed for this in the parameter fit. The molar association constant, K_{γ} , was then calculated from equation (2) and was found to be relatively insensitive to the choice of \mathring{a} .

$$K_{_{\gamma}}=(1-\gamma)/\gamma^2cf^2 \eqno(2)$$

If \mathring{a} was treated as an additional adjustable parameter the value of K_{Λ} in equation (1) was found to approach the value of K_{ν} after lengthy iteration.

Equation (2) was evaluated at each experimental concentration and the values of K_{γ} were found to have a spread of $\pm 10\%$; the average value is given in Table 2. The other rows in Table 2 give values of Λ^0 , accurate to ± 2 in the last figure.

Table 2 $\label{eq:conductance parameters} Λ^0 in cm^2 Ω^{-1} mol^{-1}, $K\gamma$ in l. mol^{-1}$$

Salt	T	Para-	Value of Conductance Parameters for P (bar)					
	$(^{\circ}\mathbf{K})$	meter	1	506	1013	2026	3040	
			Ac	etone				
mmpI	$293 \cdot 1$	Λ^{0}	198	162	124	90	68	
		K_{\sim}	596	487	242	162	133	
	$303 \cdot 1$	$K_{\gamma \atop \Lambda^0}$	209	170	140		74	
		K_{γ}	638	451	313		210	
	$313 \cdot 1$		262	215	168	127	93	
		$K_{\Lambda^{\gamma_0}}$	1010	782	469	384	277	
NaI	$298 \cdot 1$	Λ^{δ}	184ª					
		$K_{ m A}$	170a					
			B	$_{ m HO^i u}$				
mmpI	$303 \cdot 1$	Λ^{0}	$16 \cdot 2$	11.1	8.20	4.84	$3 \cdot 20$	
		K_{\sim}	4795	3212	2670	2203	2402	
NaI	$298 \cdot 1$	$K_{\gamma} \atop \Lambda^0$	$11 \cdot 8$	8.50	$6 \cdot 20$	$3 \cdot 62$	$2 \cdot 30$	
		K_{Λ^0}	858	599	440	281	219	
	$308 \cdot 1$	$\Lambda^{\acute{0}}$	$14 \cdot 3$	$10 \cdot 5$	$7 \cdot 90$	4.87	$3 \cdot 20$	
		K_{γ}	914	647	483	313	245	

a Ref. 12.

Some measured conductances are plotted against \sqrt{c} in Figure 1. The solid curves are drawn through values calculated from equation (1) and the straight lines give the Onsager tangents. The dashed interpolations follow the pattern of a type III phoreogram.³ The conductances measured by Detoit and Duperthuis¹³ and the Λ^0 values obtained from them by Walden¹⁴ are higher than those found by extrapolating our values. Doubts about their reliability were already expressed by Walden.¹⁵

¹² Janz, G. J., and Tait, M. J., Can. J. Chem., 1967, 45, 1101.

¹³ Detoit, P., and Duperthuis, H., J. Chim. phys., 1908, 6, 726.

¹⁴ Walden, P., in "Landolt-Börnsteins Tabellen", 5th Edn, Suppl. Vol. 1, p. 632. (Springer: Berlin 1961.)

¹⁵ Walden, P., Z. phys. Chem., 1911, 78, 257.

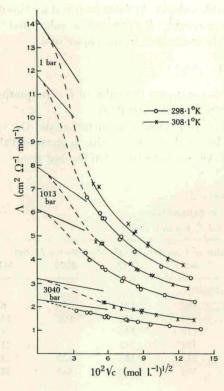


Fig. 1.—Conductance of NaI in Bu¹OH as a function of concentration at 1, 1013, and 3040 bar.

The solid curves are calculated from equation (1).

Table 3 $\label{eq:table_3}$ Thermodynamic quantities for ion association $\Delta G \text{ and } \Delta H \text{ in kJ mol}^{-1}; \ \Delta S \text{ in J mol}^{-1} \text{ K}^{-1}; \ \Delta V \text{ in cm}^3 \text{ mol}^{-1}$

Quantitya	Thermodynamic Quantities at $303 \cdot 1^{\circ}$ K for P (bar)								
- A	1	506	1013	2026	3040				
		mmpI in	Acetone		m vale				
ΔG	$-22 \cdot 8$	$-22 \cdot 1$	$-21 \cdot 2$	-20.8	-20.5				
ΔH	+19	+16	+24	+32	+27				
ΔS	+140	+130	+150	+170	+150				
ΔV	All long these	+16	+16	+41	+3				
lat a de Aleit	Eq. of the Car	mmpI ii	n Bu ⁱ OH						
ΔG	$-27 \cdot 2$	$-26 \cdot 6$	$-26 \cdot 1$	$-25\cdot7$	-26.0				
ΔV		+17	+8	+4	0				
		NaI in	BuiOH						
ΔG	$-23 \cdot 0$	$-22 \cdot 3$	$-21 \cdot 6$	-20.6	-20.0				
ΔH	$+4 \cdot 2$	+5.0	$+6\cdot3$	+7.1	+7.9				
ΔS	88	+92	+92	+.92	+92				
ΔV		+17	+13	+10	+6				

a Errors: $\Delta G \pm 0.3 \; \text{kJ mol}^{-1}$; $\Delta H \pm 0.6 \; \text{kJ mol}^{-1}$; $\Delta S \pm 3.5\%$; $\Delta V \pm 1 \; \text{cm}^3 \; \text{mol}^{-1}$.